Embedding partial Steiner triple systems so that their automorphisms extend
نویسنده
چکیده
It is shown that there is a function g on the natural numbers such that a partial Steiner triple system U on u points can be embedded in a Steiner triple system V on v points, in such a way that all automorphisms of U can be extended to V , for every admissible v satisfying v > g(u). We find exponential upper and lower bounds for g.
منابع مشابه
Embedding Partial Steiner Triple Systems
We prove that a partial Steiner triple system 8 of order n can be embedded in a Steiner triple system T of any given admissible order greater than 4w. Furthermore, if G(S), the missing-edge graph of S, has the property that A(G)<ri(n + l)l and \E(G)\ then # can be embedded in a Steiner triple system of order 2n +1, provided that 2w +1 is admissible. We also prove that if there is a partial Stei...
متن کاملAutomorphisms of Steiner triple systems
Abstract: Steiner triple systems are among the simplest and most intensively studied combinatorial designs. Their origins go back to the 1840s, and there exists by now a sizeable literature on the topic. In 1980, Babai proved that almost all Steiner triple systems have no nontrivial automorphism. On the other hand, there exist Steiner triple systems with large automorphism groups. We will discu...
متن کاملThe embedding problem for partial Steiner triple systems
The system has the nice property that any pair of distinct elements of V occurs in exactly one of the subsets. This makes it an example of a Steiner triple system. Steiner triple systems first appeared in the mathematical literature in the mid-nineteenth century but the concept must surely have been thought of long before then. An excellent historical introduction appears in [7]. As pointed out...
متن کاملIsomorphisms of Infinite Steiner Triple Systems II
A combinatorial method in conjuction with the results presented in [F] is introduced to prove that for any infinite cardinal κ, and every cardinal λ, 0≤λ≤κ, there are 2 mutually non-isomorphic Steiner triple systems of size κ that admit exactly 2 automorphisms. In particular, there are 2 mutually non-isomorphic rigid Steiner triple systems of size κ.
متن کاملSteiner Triple Systems of Order 19 with Nontrivial Automorphism Group
There are 172,248 Steiner triple systems of order 19 having a nontrivial automorphism group. Computational methods suitable for generating these designs are developed. The use of tactical configurations in conjunction with orderly algorithms underlies practical techniques for the generation of the designs, and the subexponential time isomorphism technique for triple systems is improved in pract...
متن کامل